Archive for Новости

Виды толщиномеров для измерения

Толщиномер — это измерительный прибор, позволяющий с высокой точностью измерить толщину материала или слоя покрытия материала (такого как краска, лак, грунт, шпатлёвка, ржавчина, толщину основной стенки металла, пластмасс, стекла, а также других неметаллических соединений, покрывающих металл). Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.
Применяется в автомобильной, судостроительной промышленности для контроля качества лакокрасочного покрытия транспортных средств, в ремонтных работах, для определения состояния кузова или обшивки по результатам эксплуатации.

В строительстве применяется для определения толщины покрытия металла, имеющего в своем составе противопожарные, антикоррозийные и другие виды компонентов, используемые при создании конструкций зданий.

Толщиномер применяется в работе экспертов-оценщиков, страховщиков, профессиональных полировщиков, контролирующих качество проведения покрасочных работ.

Виды толщиномеров
Толщиномеры делятся по принципу их работы, сфере применения, а также способу произведения измерений на:

механические
электромагнитные
ультразвуковые
магнитные
вихретоковые
электромагнитновихретоковые
Механические толщиномеры

Толщиномер мокрого слоя предназначен для оперативного контроля неотвердевших лакокрасочных покрытий, чтобы затем сделать выводы о толщине сухой пленки. Контроль толщины наносимого лакокрасочного покрытия позволяет избежать возникновения проблем связанных с укрывистостью, скоростью сушки, внешним видом покрытия, перерасходом краски и т.д.

Электромагнитные толщиномеры
В приборах данного вида для измерений используются как магнитная индукция, так и эффект Холла, позволяющий проводить измерения плотности магнитного поля. Для создания магнитного поля чаще всего используется мягкий ферромагнитный стержень с катушкой. Также, в свою очередь, для обнаружения каких-либо изменений в магнитном потоке применяется второй стержень с катушкой. Толщина покрытия определяется путём измерения плотности магнитного потока. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Вихретоковые толщиномеры
Для проведения измерений непроводящих покрытий без их разрушения используются толщиномеры с вихретоковым принципом действия. На поверхности зонда прибора с помощью тока (с частотой от десятков КГц до единиц МГц), проходящего через катушку, на которую намотана тонкая проволока, генерируется переменное магнитное поле. При приближении зонда к токопроводящей поверхности, переменное магнитное поле генерирует на ней вихревые токи (токи Фуко). Вихревые токи создают собственные (противоположные первичному) электромагнитные поля, которые могут быть измерены основной или второстепенной обмоткой. Вихретоковый метод используется преимущественно для хорошо проводящих поверхностей, в частности сделанных из цветных металлов (например алюминий). Величина напряжения на измерительной обмотке (измеряемая величина) зависит от расстояния от неё до электропроводящей поверхности, которая и является толщиной непроводящего покрытия.

Ультразвуковые толщиномеры
Для ультразвуковых толщиномеров характерно наличие ультразвукового датчика в зонде, который посылает импульс через анализируемое (чаще всего неметаллическое) покрытие. Импульс отражается от поверхности и затем преобразуется датчиком в высокочастотный электрический сигнал. Эхо сигнала оцифровывается и анализируется для определения толщины покрытия. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Преимущества использования ультразвуковых толщиномеров:

Ультразвуковые толщиномеры часто используются в ситуациях, когда имеется доступ только к одной стороне поверхности изделия, толщина которого должна быть определена, например: трубопроводы или в тех местах, где простые механические измерения невозможны или нецелесообразны по другим причинам, таким как, размер изделия или ограниченный доступ. Факт того, что измерение толщины может быть сделано легко и быстро с одной стороны, без необходимости вырезания какой-либо части, является главным преимуществом использования ультразвукового толщиномера. Практически любой конструкционный материал может быть измерен с помощью ультразвука. Ультразвуковой толщиномеры может быть использован для металлов, пластмасс, композитов, стекловолокна, керамики и стекла.